
INTRODUCTION

The majority of bacterial recombinant strains
bearing genes cloned in plasmids are known to be of-
ten unstable both in batch and still more in prolonged
continuous cultivation in a chemostat [1–4]. One
should take into account at least the following facts
when the population dynamics of unstable recombi-
nant plasmid-bearing bacterial strains is described:

(i) plasmid segregational instability, when a por-
tion of cells in the population lose their plasmids dur-
ing reproduction;

(ii) instability of the plasmid genetic structure,
when plasmids are retained in all cells but their form
changes;

(iii) difference in the characteristics of the
growth kinetics of the strain containing a certain num-
ber of plasmid copies as compared with the analogous
plasmidless strain variants, the variants with the small

number of copies, or the variants containing plasmids
with altered structure.

A number of mathematical models that describe
the population dynamics of plasmid-bearing bacteria
under various cultivation conditions have been pro-
posed [5]; among these of particular interest is the
model of Levin and Stewart, which describes the
segregational instability of the recombinant strains
[6–7]. Basically, it describes the dynamics of popula-
tions of the plasmid-bearing n+ and the plasmidless n–

cells in a chemostat, taking into consideration the
probability of spontaneous plasmid loss in cell divi-
sion and plasmid conjugal transfer between cells:
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Abstract—We developed an approach to study the population dynamics of unstable recombinant bacterial
strains cultivated in a chemostat. It is based on mathematical modeling of the distribution of cells bearing a
different number of plasmid copies in the population. We analyzed the effect of a decreased selective ad-
vantage of plasmidless variants of the recombinant strain in the chemostat, which is related to a decreased
number of plasmid copies in cells after long cultivation. It is shown that the time of plasmid
half-elimination from the bacterial population in the chemostat at steady state, T1/2, does not depend on the
maximal number N of plasmid copies in the cells, and is determined solely by the average generation time g
and the probability τ of losing a plasmid copy. We analyzed the dependence of the selective advantage of
plasmidless bacterial variants cultivated in a chemostat on the expression genes cloned in plasmids, using as
an example the E. coli recombinant strain Z905, whose pPHL-7 plasmids contain cloned genes of the lumi-
nescent system of marine luminescing bacteria Photobacterium leiognathi.
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where τ is the probability of formation of a plasm-
idless cell upon division; γ is the conjugal plasmid
transfer rate parameter; D is the specific rate of media
dilution in the chemostat; S, S0 are substrate concen-
trations in the fermentor and in the incoming medium
respectively; µ+ and µ– are the specific population
growth rates for the plasmid-bearing and the
plasmidless strains, respectively, which are functions
of the substrate concentration limiting the growth:
µ µ+ + += +

max
S K Ss( ), µ µ− − −= +

max
S K Ss( ),

µ
max

+ , µ
max

− are the maximal growth rates, Ks
+ , Ks

− are
the Monod constants; and Y+, Y– are the coefficients
of substrate consumption efficacy for the plasmid-be-
aring and the plasmidless strains, respectively.

Various experimental data on cultivation of
plasmid-bearing strains obtained by now do not agree
with this model [2, 3, 8]. In a number of cases, this is
related to the fact that model (1) in essence pertains to
the bacterial strains containing only a single copy of a

plasmid (indeed, the model considers only two types
of cell, the plasmid-bearing and the plasmidless one),
which in principle is not true for the real recombinant
bacteria, the majority of which contain many plasmid
copies. Usually, the cell population contains a number
of classes of cells bearing different numbers of
plasmid copies [1–10]. Jones with his coworkers ex-
perimentally demonstrated [3] that the rates of dis-
placement of a plasmid-bearing strain with a plasmid-
less strain are different for the cases of natural
plasmid elimination during prolonged cultivation at
steady state in a chemostat and after introduction of
0.1% of the isogeneic plasmidless cells into the popu-
lation of plasmid-bearing bacteria. For such cases,
however, the Levin–Stewart model (1) offers identical
replacement rates (Fig. 1, curve 2). One can suppose
that during prolonged cultivation of multicopy recom-
binant plasmids in the chemostat the number of
plasmid copies in the cells is reduced or the expres-
sion efficiency of genes cloned in the plasmids is de-
creased. If it is assumed that a greater number of
plasmid copies in cells or a higher expression of
plasmid genes decreases the specific rate of popula-
tion growth, then the selective advantage of the
plasmidless variants is reduced when the number of
plasmid copies is small, and the curve of displace-
ment of the plasmid-bearing strain with the plasmid-
less one should have a lesser slope (Fig. 1, curve 2′).
In this paper, we present a mathematical model of
plasmid segregational instability, which describes the
population dynamics of the bacterial strains bearing
many plasmid copies cultivated in selective and
nonselective conditions, taking into account different
expression levels of cloned genes.

FORMULATION
OF THE MATHEMATICAL MODEL

Let us assume that at the initial moment the cell
has N copies of the plasmid, and, with a certain proba-
bility τN, one plasmid copy is lost during cell division;
correspondingly, with probability (1 – τN) all plasmids
are replicated and divided equally between the daugh-
ter cells. Physically, this means that a cell of the class
with i plasmid copies can move only to the nearest
classes with i + 1 or i – 1 copies.

As the overall cell number is maintained con-
stant in the chemostat steady state, to describe the
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Fig. 1. Decrease in the selective advantage of the
plasmidless recombinant strain during prolonged cultiva-
tion in a chemostat under the conditions nonselective for
plasmid conservation: (1) competition of the plasmidless
variant with the initial recombinant strain with the maxi-
mal number of plasmid copies in a cell, N = 10; initially,
0.01% of the plasmidless isogeneic cells is added into the
chemostat (calculations were made according to model
(5)); (2) spontaneous replacement of the initial strain
with its plasmidless variant during prolonged cultivation:
calculations according to the Lewin–Stewart model (1);
(2′, 3, 4) spontaneous replacement similar to that in (2)
but with calculations done according to the multicopy
model (5); the maximal number of plasmid copies in a
cell: (2′) N = 10; (3) N = 20; (4) N = 30. In all cases the
following expression was chosen for the specific popula-
tion growth rate: µ(x, S) = exp(–0.5i/N)S/(1 + S), τ = 10–2,
D = 0.5 h–1 (all coefficients are dimensionless).



sequential loss of plasmids in cell division we can
write down a continuity equation (see Appendix)

∂
∂

+ = −
F

t
xF x S D Fdiv( & ) [ ( , ) ]µ , (2)

where F is the microbial population density; µ(x,S) is
the specific propagation rate of the population; D is
the specific rate of dilution in the chemostat; S is the
concentration of the substrate limiting the microbial
growth; x is the relative copy number of the plasmid
DNA per cell, equaling i/N, where i is the current
plasmid copy number in the cell: i = 0, ..., N and N is
the maximal plasmid copy number in the cell; &x is the
rate of plasmid flux from the variant with copy num-
ber x to the variant with copy number x+ dx. Given
that the plasmids are segregationally unstable, the rate
of plasmid loss can be taken proportional to their
copy number in the cell and to the population specific
growth rate, and thus write down

& ( , )x x S x= −τµ , (3)

where τ is the specific probability of the loss of one
plasmid copy in cell division.

Uniting expressions (2) and (3), we arrive at an
equation describing the dynamics of the plasmid copy
number in the population of a recombinant strain:

∂
∂

= − +
∂
∂

F

t
x S D F

x
x x S F[ ( , ) ] [ ( , ) ]µ τ µ , (4)

where
∂
∂

≡
x

div is a differential operator.

Supplementing equation (4) with an equation for
the growth-limiting substrate S, we obtain a mathe-
matical model of the population dynamics of a micro-
bial plasmid-bearing strain with plasmid segregational
instability in a chemostat:
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where S0 is the substrate concentration in the supplied
medium; y(x,S) is the efficacy of substrate utilization
by the microorganism, which, in the general case,
may vary depending on the plasmid copy number in

the cells and on the substrate concentration in the me-
dium; ρ = di/dx is the state density.

SELECTIVE ADVANTAGE OF PLASMIDLESS
VARIANTS IN THE CHEMOSTAT

Examination of the experimental data of Jones
et al. [3] using the mathematical model (5) demon-
strates that the varying rate of the displacement of
plasmid-bearing cells by plasmidless ones can indeed
be associated with the decline in the selective advan-
tage of the plasmidless variants upon reduction of the
plasmid copy number in the chemostat under condi-
tions nonselective with respect to plasmid mainte-
nance. On the other hand, a decrease in the average
plasmid copy number per cell in multicopy recombi-
nant strains must necessarily be observed upon
long-term cultivation in the chemostat if the copy
number is initially high enough (N ∝ 10) (Fig. 1).

In the general case, the relative selective advan-
tage of the plasmidless variant, which determines the
selection pressure, would enter the distributed model
(5) as α(x) = [ ~( ) ~( )]1 0− µ µx , where ~µ( )x is the “ap-

parent” specific growth rate for the variant with rela-
tive copy number x (cf. [5–8]). The ~µ( )x expression,
among other things, takes into account the mortality,
the influence of the efficacy of the expression of
plasmid-cloned genes (ε) on the population specific
growth rate µ, plasmid loss in cell division with a
nonzero probability τ, and other effects that determine
the “apparent” specific growth rate for the microbial
population under study.

Using the structural model in the form (4), one
can obtain an explicit equation for the relative selec-
tive advantage α(x) of the plasmidless variants accu-
rate to the terms of the τ order:

α
µ
µ

τ
µ
µ

( )
( )

( )

( )

( )
x

x
x

x
= − −

′
1

0 0
(6)

where µ(x) is the “true” specific growth rate for the
microbial population. In this equation, the third
summand reflects the contribution of the probability τ
of plasmid loss and the plasmid copy number x in the
cell to the selective advantage, a feature basically be-
yond the Levin–Stewart model (1) which only de-
scribes the dynamics of single-copy strains. At certain
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x values this contribution can be quite sizable, de-
pending on the specific growth rate gradient.

With the nonlinear dependence of the population
specific growth rate on the plasmid concentration in
the cells, there is a certain small plasmid copy number
wherewith the selection pressure on such cells in the
chemostat falls virtually to zero (Fig. 2). The curves
for α(x) were generated using equation (6) at two val-
ues of parameter τ, and two expressions for the popu-
lation specific growth rate: µ = exp(–0.5x) and
µ = exp(–0.5x3); the different power should reflect the
different contribution of the efficiency of cloned gene
expression and of the plasmid copy number to the
population specific growth rate µ(x). In the latter case,
at x << 1 the selective advantage of plasmidless vari-
ants becomes insignificant and, τ being small enough,
low-copy variants can be maintained in a chemostat
for long times, which has more than once been shown
experimentally by us and other authors [8–11].

In our experiments, we assessed the duration of
maintaining plasmid-bearing cells (or the rate of their
elimination) in a chemostat (D = 0.1 h–1) under non-
selective conditions with different growth-limiting
substrates: glucose or glycerol [8, 9]. The model ob-
ject was an Escherichia coli strain Z905 containing a
recombinant plasmid pPHL-7 with genes of the lumi-
nescent system of a marine light-emitting microorgan-
ism Photobacterium leiognathi cloned in pUC18

under the lac promoter. Changing the growth-limiting
substrates allows one to vary the efficacy of expres-
sion of the cloned lux genes: on glucose the intensity
of luminescence of the bacterial suspension is dimin-
ished by two or three orders of magnitude because the
lux operon is subject to catabolite repression, which is
abolished during growth on glycerol. The experimen-
tal data and the model calculations taking into account
the influence of plasmid gene expression efficiency
on the population specific growth rate as well as the
probability of plasmid loss in cell division are col-
lated in Fig. 3, demonstrating a good fit.

TIME OF HALF-ELIMINATION
OF PLASMIDS FROM A POPULATION

In practice, it is often quite convenient to use,
along with τ, γ, α(x), the instability parameter that
characterizes the duration of the productive state of
the population of the constructed recombinant strain.
With approach (2) and model (5), this time interval is
determined as follows.

Theorem. The half-elimination time for bacte-
rial plasmids (i.e., the time interval in which half of
all the plasmid copies are eliminated from the popula-
tion) in a chemostat at low α(x) does not depend on
the maximal plasmid copy number in the cells, and
equals T1/2 = g/τ, where g = ln2/D is the mean
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Fig. 3. Dynamics of the structure of the population of a
recombinant bacterial strain E. coli Z905 (pPHL-7) in a
chemostat (D = 0.1 h–1): (1) glycerol and (2) glucose as
rate-limiting substrates; points are experimental data,
curves represent theoretical calculations according to the
mathematical model (5).

Fig. 2. Dependences of the relative selective advantage
(α) of plasmidless variants on the plasmid relative copy
number x in plasmid-bearing cells at different values of
parameter τ (calculations by equation (6)): (1) for µ =
= exp(–0.5 x3), τ = 10–3; (2) same but τ = 10–1; (3) for
µ = exp(–0.5 x), τ = 10–3; (4) same but τ = 10–1.



generation time (time between two consecutive cell
divisions) and τ is the probability of losing one
plasmid copy in division.

Proof. The plasmid half-elimination time for un-
stable recombinant microbial strains is defined as the
time interval in which half of all the plasmid copies
are eliminated from the population. The overall num-
ber of plasmids in the population is written down as

L t xF x t dx( ) ( , )= ∫
0

1

. (7)

Using definition (7) with allowance for the
boundary condition F(x = 1, t) = 0, from the set of
equations (5) we derive a mathematical model of the
dynamics of the overall copy number of a plasmid in
a bacterial population in a chemostat:

dL

dt
DL x x S F x t dx= − + − ∫( ) ( , ) ( , )1

0

1

τ µ , (8)

where the dynamics of plasmid distribution F(x,t) is
described by set (5).

In a chemostat close to a steady state, the fol-
lowing conditions are fulfilled at low α(x) [8, 12, 13]:

µ( , ) ,

.

x S D

dS

dt

≈
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0

(9)

Then the dynamics of the overall copy number
of a plasmid in a bacterial population according to (8)
is determined by the equation

dL

dt
DL= −τ . (10)

Integrating the latter, we obtain that the time in
which the initial number of plasmid is halved can be
expressed as

T
g

1 2/ =
τ

. (11)

Hence it follows that the half-elimination time
for bacterial plasmids does not depend on the maxi-
mal plasmid copy number in the cells, and is deter-
mined only by the mean generation time and the prob-
ability of losing one plasmid copy in division. The re-
sults of calculations by model (5) confirming this

conclusion for different values of the maximal
plasmid copy numbers are displayed in Fig. 4.

Thus, knowing the probability τ of a cell losing
one plasmid copy, the expression for the half-elimin-
ation time can be used to determine the characteristic
duration of the fermentation process till the moment
when the productivity of an unstable recombinant
strain drops by half because of plasmid loss. In this
respect, the half-elimination time is an important
characteristic of the population stability of gene-en-
gineered microbial strains under intense cultivation.

CONCLUSION

In a more general case, to describe the popula-
tion dynamics for several different plasmids in micro-
bial cells, it is first of all necessary to form a vector of
plasmids in the population:

x = ( , )x x x j1 2 K , (12)

where x1 is the relative copy number of type 1
plasmids per cell, x2 is the same for type 2 plasmids,
et seq. Then, the properties of different types of
plasmid are set in the form of differential equations
describing the compatibility, segregational and struc-
tural instability, etc.:
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Fig. 4. Decline in the overall plasmid copy number in a
bacterial population in a chemostat for different maximal
copy numbers per cell (N): (1) 50, (2) 30, (3) 10; τ = 10–2;
calculations performed according to the mathematical
model (5). The arrow marks the plasmid half-elimination
time. The ordinate is the overall number of plasmids in
the population.
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d

dt
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Substituting set (13) into the continuity equation
(2) and adding the equation for the growth-limiting
factor S, we arrive at the mathematical model of the
population dynamics for a multicopy multiplasmid re-
combinant strain in a chemostat:
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Thus, analytical and numerical solution of set
(14) allow description of the population dynamics of
unstable recombinant microbial strains under various
conditions of cultivation with allowance for the par-
ticular mechanisms of plasmid instability in the cell.

The approach to modeling the biological popula-
tion dynamics based on the continuity equation has
earlier been used by a number of authors to describe
the distribution of organisms in certain features such
as age or size [13–17]. The approach proposed in the
present work basically enables one to describe the
population dynamics for multicopy multiplasmid mi-
crobial strains also taking into account the incompati-
bility of particular plasmids and the different expres-
sion efficiency of the cloned genes.

APPENDIX

In the general case, equation (20 is derived from
the law of conservation of the cell number for an arbi-
trary region of the phase space V(dV = dnr

x). In the
process, it should be taken into account that, along
with the flux across the boundaries caused by the
change in the copy number with time, there are such
events as cell birth and death, which can be regarded
as sources µ(F,S) and sinks D distributed throughout
the region considered. By the moment of time t, in the
phase space volume considered there will be Fd xn∫ r

in-

dividuals. The birth and death are covered by the fol-

lowing integral: [ ( , ) ]
V

n
t

x S D d xdt∫∫ −µ r r

0

. Differentiating

these expressions in t, for any moment of time we ob-
tain the law of conservation of the bacterial cell num-
ber in a chemostat:

d

dt
Fd x x S D d x

V

n

V

n∫ ∫= −r r r
[ ( , ) ]µ . (15)

Transferring the operation of differentiation un-
der the integral brings us to the following expression:

∂
∂

+ = −∫ ∫ ∫
F

t
d x F v ds x S D d x

V

n

S V

nr r r r r
( ( ) [ ( , ) ]µ , (16)

where
r r
v v x t= [ , ] is the rate of plasmid transfer from

the variant with the relative copy number
r
x to the

variant with
r r
x d xn+ . Making use of the Gauss–Ostro-

gradsky theorem, with standard operations and allow-
ance for the arbitrariness of the region V, we obtain

∂
∂

+ = −
F

t
x F x S D Fdiv( & ) [ ( , ) ]
r rµ , (17)

where div(
r
v) is the divergence of vector

r
v.
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